- home
- Search
Loading
description Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 18 Feb 2025 Germany EnglishElsevier Bo Ma; Jacob Geersen; Dirk Klaeschen; Eduardo Contreras-Reyes; Michael Riedel; Yueyang Xia; Anne M. Tréhu; Dietrich Lange; Heidrun Kopp;The subduction of seamounts and basement ridges affects the structure, morphology, and physical state of a convergent margin. To evaluate their impact on the seismo-tectonic setting of the subduction zone and the tectonic development of the lower subducting and upper overriding plate, it is essential to know the precise location of subducted topographic features under the marine forearc. Offshore Northern Chile, the Iquique Ridge represents a broad zone of complex and heterogeneous structure of variable width on the oceanic Nazca Plate, which complicates attempts to project it beneath the forearc of the Chilean subduction zone. Here we use a state-of-the-art seismic reflection data processing approach to map structures related to ridge subduction under the marine forearc with unprecedented accuracy and resolution and evaluate their impact on the deformation of both the plate boundary and the upper plate. We show that significant ridge-related topography is currently subducting south of 20.5 °S and that the combined effect of horst and graben subduction with subduction of Iquique ridge-related thickened and elevated crust causes an upward bulging of the entire upper plate from the plate interface up to the seafloor as well as the presence of kilometer-scale anticlinal structures observed in multibeam bathymetric data that are approximately aligned with horsts seaward of the trench. In the area affected by the subducting ridge, a frontal prism is absent, which may relate to frontal subduction erosion caused by the excess lower plate topography. In contrast farther towards the north, where only isolated seamounts subduct, a small frontal prism and a slope/apron sediment cover down to 3000 m water depth are found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsames.2023.104262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsames.2023.104262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 01 Oct 2023 Germany EnglishElsevier Authors: Michel Kühn; Jens Karstens; Christian Berndt; Sebastian F. L. Watt;Michel Kühn; Jens Karstens; Christian Berndt; Sebastian F. L. Watt;Highlights • We report two previously unknown sector collapse deposits on the flank of Sarkar. • Deposits originated from the same island and traveled on the same slope. • The associated failure led to very different mass transport deposits. • Difference of deposits is attributed to geological characteristics of slide planes. Abstract Volcanic island sector collapses have produced some of the most voluminous mass movements on Earth and have the potential to trigger devastating tsunamis. In the marine environment, landslide deposits offshore the flanks of volcanic islands often consist of a mixture of volcanic material and incorporated seafloor sediments. The interaction of the initial volcanic failure and the substrate can be highly complex and have an impact on both the total landslide deposit volume and its emplacement velocity, which are important parameters during tsunami generation and need to be correctly assessed in numerical landslide-tsunami simulations. Here, we present a 2D seismic analysis of two previously unknown, overlapping volcanic landslide deposits north-west of the island of Sakar (Papua New Guinea) in the Bismarck Sea. The deposits are separated by a package of well-stratified sediment. Despite both originating from the same source, with the same broad movement direction, and having similar deposit volumes (~15.5–26 km3), the interaction of these landslides with the seafloor is markedly different. High-resolution seismic reflection data show that the lower, older deposit comprises a proximal, chaotic, volcanic debris avalanche component and a distal, frontally confined component of deformed pre-existing well-bedded seafloor sediment. We infer that deformation of the seafloor sediment unit was caused by interaction of the initial volcanic debris avalanche with the substrate. The deformed sediment unit shows various compressional structures, including thrusting and folding, over a downslope distance of more than 20 km, generating >27% of shortening over a 5 km distance at the deposit's toe. The volume of the deformed sediments is almost the same as the driving debris avalanche deposit. In contrast, the upper, younger landslide deposit does not show evidence for substrate incorporation or deformation. Instead, the landslide is a structurally simpler deposit, formed by a debris avalanche that spread freely along the contemporaneous seafloor (i.e., the top boundary of the intervening sediment unit that now separates this younger landslide from the older deposit). Our observations show that the physical characteristics of the substrate on which a landslide is emplaced control the amount of seafloor incorporation, the potential for secondary seafloor failure, and the total landslide runout far more than the nature of the original slide material or other characteristics of the source region. Our results indicate the importance of accounting for substrate interaction when evaluating submarine landslide deposits, which is often only evident from internal imaging rather than surface morphological features. If substrate incorporation or deformation is extensive, then treating landslide deposits as a single entity substantially overestimates the volume of the initial failure, which is much more important for tsunami generation than secondary sediment failure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margeo.2021.106563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margeo.2021.106563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Embargo end date: 01 Jun 2019 GermanyEuropean Association of Geoscientists & Engineers EC | BLUE MININGAuthors: Safipour, Roxana; Hölz, Sebastian; Jegen, Marion; Swidinsky, Andrei;Safipour, Roxana; Hölz, Sebastian; Jegen, Marion; Swidinsky, Andrei;We study a new marine electromagnetic configuration which consists of a ship-towed inductive source transmitter and a series of remote electric dipole receivers placed on the seafloor. The approach was tested at the Palinuro Seamount in the southern Tyrrhenian Sea, at a site where massive sulfide mineralization has been previously identified by shallow drilling. A 3D model of the Palinuro study area was created using bathymetry data, and forward modeling of the electric field diffusion was carried out using a finite volume method. These numerical results suggest that the remote receivers can theoretically detect a block of shallowly-buried conductive material at up to ∼100 m away when the transmitter is located directly above the target. We also compared the sensitivity of the method using either a horizontal loop transmitter or a vertical loop transmitter and found that when either transmitter is located directly above the mineralized zone, the vertical loop transmitter has sensitivity to the target at a farther distance than the horizontal loop transmitter in the broadside direction by a few 10s of meters. Furthermore, the vertical loop transmitter is more effective at distinguishing the seafloor conductivity structure when the vertical separation between transmitter and receiver is large due to the bathymetry. As a horizontal transmitter is logistically easier to deploy, we conducted a first test of the method with a horizontal transmitter. Apparent conductivities are calculated from the electric field transients recorded at the remote receivers. The analysis indicates higher apparent seafloor conductivities when the transmitter is located near the mineralized zone. Forward modeling suggests that the best match to the apparent conductivity data is obtained when the mineralized zone is extended southward by 40 m beyond the zone of previous drilling. Our results demonstrate that the method adds value to the exploration and characterization of seafloor massive sulfide deposits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::0e7b7c85d9504e814ef0c1d30b7c65da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::0e7b7c85d9504e814ef0c1d30b7c65da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 18 Feb 2025 Germany EnglishElsevier Bo Ma; Jacob Geersen; Dirk Klaeschen; Eduardo Contreras-Reyes; Michael Riedel; Yueyang Xia; Anne M. Tréhu; Dietrich Lange; Heidrun Kopp;The subduction of seamounts and basement ridges affects the structure, morphology, and physical state of a convergent margin. To evaluate their impact on the seismo-tectonic setting of the subduction zone and the tectonic development of the lower subducting and upper overriding plate, it is essential to know the precise location of subducted topographic features under the marine forearc. Offshore Northern Chile, the Iquique Ridge represents a broad zone of complex and heterogeneous structure of variable width on the oceanic Nazca Plate, which complicates attempts to project it beneath the forearc of the Chilean subduction zone. Here we use a state-of-the-art seismic reflection data processing approach to map structures related to ridge subduction under the marine forearc with unprecedented accuracy and resolution and evaluate their impact on the deformation of both the plate boundary and the upper plate. We show that significant ridge-related topography is currently subducting south of 20.5 °S and that the combined effect of horst and graben subduction with subduction of Iquique ridge-related thickened and elevated crust causes an upward bulging of the entire upper plate from the plate interface up to the seafloor as well as the presence of kilometer-scale anticlinal structures observed in multibeam bathymetric data that are approximately aligned with horsts seaward of the trench. In the area affected by the subducting ridge, a frontal prism is absent, which may relate to frontal subduction erosion caused by the excess lower plate topography. In contrast farther towards the north, where only isolated seamounts subduct, a small frontal prism and a slope/apron sediment cover down to 3000 m water depth are found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsames.2023.104262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jsames.2023.104262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Embargo end date: 01 Oct 2023 Germany EnglishElsevier Authors: Michel Kühn; Jens Karstens; Christian Berndt; Sebastian F. L. Watt;Michel Kühn; Jens Karstens; Christian Berndt; Sebastian F. L. Watt;Highlights • We report two previously unknown sector collapse deposits on the flank of Sarkar. • Deposits originated from the same island and traveled on the same slope. • The associated failure led to very different mass transport deposits. • Difference of deposits is attributed to geological characteristics of slide planes. Abstract Volcanic island sector collapses have produced some of the most voluminous mass movements on Earth and have the potential to trigger devastating tsunamis. In the marine environment, landslide deposits offshore the flanks of volcanic islands often consist of a mixture of volcanic material and incorporated seafloor sediments. The interaction of the initial volcanic failure and the substrate can be highly complex and have an impact on both the total landslide deposit volume and its emplacement velocity, which are important parameters during tsunami generation and need to be correctly assessed in numerical landslide-tsunami simulations. Here, we present a 2D seismic analysis of two previously unknown, overlapping volcanic landslide deposits north-west of the island of Sakar (Papua New Guinea) in the Bismarck Sea. The deposits are separated by a package of well-stratified sediment. Despite both originating from the same source, with the same broad movement direction, and having similar deposit volumes (~15.5–26 km3), the interaction of these landslides with the seafloor is markedly different. High-resolution seismic reflection data show that the lower, older deposit comprises a proximal, chaotic, volcanic debris avalanche component and a distal, frontally confined component of deformed pre-existing well-bedded seafloor sediment. We infer that deformation of the seafloor sediment unit was caused by interaction of the initial volcanic debris avalanche with the substrate. The deformed sediment unit shows various compressional structures, including thrusting and folding, over a downslope distance of more than 20 km, generating >27% of shortening over a 5 km distance at the deposit's toe. The volume of the deformed sediments is almost the same as the driving debris avalanche deposit. In contrast, the upper, younger landslide deposit does not show evidence for substrate incorporation or deformation. Instead, the landslide is a structurally simpler deposit, formed by a debris avalanche that spread freely along the contemporaneous seafloor (i.e., the top boundary of the intervening sediment unit that now separates this younger landslide from the older deposit). Our observations show that the physical characteristics of the substrate on which a landslide is emplaced control the amount of seafloor incorporation, the potential for secondary seafloor failure, and the total landslide runout far more than the nature of the original slide material or other characteristics of the source region. Our results indicate the importance of accounting for substrate interaction when evaluating submarine landslide deposits, which is often only evident from internal imaging rather than surface morphological features. If substrate incorporation or deformation is extensive, then treating landslide deposits as a single entity substantially overestimates the volume of the initial failure, which is much more important for tsunami generation than secondary sediment failure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margeo.2021.106563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.margeo.2021.106563&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Embargo end date: 01 Jun 2019 GermanyEuropean Association of Geoscientists & Engineers EC | BLUE MININGAuthors: Safipour, Roxana; Hölz, Sebastian; Jegen, Marion; Swidinsky, Andrei;Safipour, Roxana; Hölz, Sebastian; Jegen, Marion; Swidinsky, Andrei;We study a new marine electromagnetic configuration which consists of a ship-towed inductive source transmitter and a series of remote electric dipole receivers placed on the seafloor. The approach was tested at the Palinuro Seamount in the southern Tyrrhenian Sea, at a site where massive sulfide mineralization has been previously identified by shallow drilling. A 3D model of the Palinuro study area was created using bathymetry data, and forward modeling of the electric field diffusion was carried out using a finite volume method. These numerical results suggest that the remote receivers can theoretically detect a block of shallowly-buried conductive material at up to ∼100 m away when the transmitter is located directly above the target. We also compared the sensitivity of the method using either a horizontal loop transmitter or a vertical loop transmitter and found that when either transmitter is located directly above the mineralized zone, the vertical loop transmitter has sensitivity to the target at a farther distance than the horizontal loop transmitter in the broadside direction by a few 10s of meters. Furthermore, the vertical loop transmitter is more effective at distinguishing the seafloor conductivity structure when the vertical separation between transmitter and receiver is large due to the bathymetry. As a horizontal transmitter is logistically easier to deploy, we conducted a first test of the method with a horizontal transmitter. Apparent conductivities are calculated from the electric field transients recorded at the remote receivers. The analysis indicates higher apparent seafloor conductivities when the transmitter is located near the mineralized zone. Forward modeling suggests that the best match to the apparent conductivity data is obtained when the mineralized zone is extended southward by 40 m beyond the zone of previous drilling. Our results demonstrate that the method adds value to the exploration and characterization of seafloor massive sulfide deposits.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::0e7b7c85d9504e814ef0c1d30b7c65da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2386::0e7b7c85d9504e814ef0c1d30b7c65da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu