Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ArchiMer - Instituti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Earth and Planetary Science Letters
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Hal-Diderot
Article . 2021
License: CC BY
Data sources: Hal-Diderot
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The 2018-ongoing Mayotte submarine eruption: Magma migration imaged by petrological monitoring

Authors: Carole Berthod; Etienne Médard; Patrick Bachèlery; Lucia Gurioli; Andrea Di Muro; Aline Peltier; Jean-Christophe Komorowski; +17 Authors

The 2018-ongoing Mayotte submarine eruption: Magma migration imaged by petrological monitoring

Abstract

Deep-sea submarine eruptions are the least known type of volcanic activity, due to the difficulty of detecting, monitoring, and sampling them. Following an intense seismic crisis in May 2018, a large submarine effusive eruption offshore the island of Mayotte (Indian Ocean) has extruded at least 6.5 km3 of magma to date, making it the largest monitored submarine eruption as well as the largest effusive eruption on Earth since Iceland's 1783 Laki eruption. This volcano is located along a WNW-ESE volcanic ridge, extending from the island of Petite Terre (east side of Mayotte) to about 3,500 m of water depth. We present a detailed petrological and geochemical description of the erupted lavas sampled by the MAYOBS 1, 2, and 4 cruises between May and July 2019 and use these to infer characteristics and changes through time for the whole magmatic system and its dynamics from the source to the surface. These cruises provide an exceptional time-series of bathymetric, textural, petrological, and geochemical data for the 2018-2019 eruptive period, and hence bring an invaluable opportunity to better constrain the evolution of magma storage and transfer processes during a long-lived submarine eruption. Integrating the petrological signatures of dredged lavas with geophysical data, we show that the crystal-poor and gas-rich evolved basanitic magma was stored at mantle depth (>37 km) in a large (≥10 km3) reservoir and that the eruption was tectonically triggered. As the eruption proceeded, a decrease in ascent rate and/or a pathway change resulted in the incorporation of preexisting differentiated magma stored at a shallower level. Magma transfer from the deep mantle reservoir is syn-eruptive, as indicated by transfer times estimated from diffusion in zoned olivine crystals that are much shorter than the total eruption duration. Our petrological model has important hazard implications concerning the rapid and stealthy awakening of a deep gas-rich magma reservoirs that can produce unusually high output rates and long-lived eruption. Sudden tapping of large crystal poor reservoirs may be the trigger mechanism for other rarely witnessed high-volume (>1 km3) effusive events.

International audience

Co-auteur étranger

Country
France
Subjects by Vocabulary

Microsoft Academic Graph classification: Geochemistry engineering.material Mantle (geology) Effusive eruption geography geography.geographical_feature_category Olivine Submarine eruption Volcano Ridge Magma engineering Submarine pipeline Geology

Keywords

mantle reservoirs, [SDU.STU.PE]Sciences of the Universe [physics]/Earth Sciences/Petrography, Mayotte, petrological model, Geochemistry and Petrology, dredges, Earth and Planetary Sciences (miscellaneous), submarine eruption, multiple storage zone, Geophysics, [SDU]Sciences of the Universe [physics], Space and Planetary Science

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 1%
Average
Top 1%
bronze